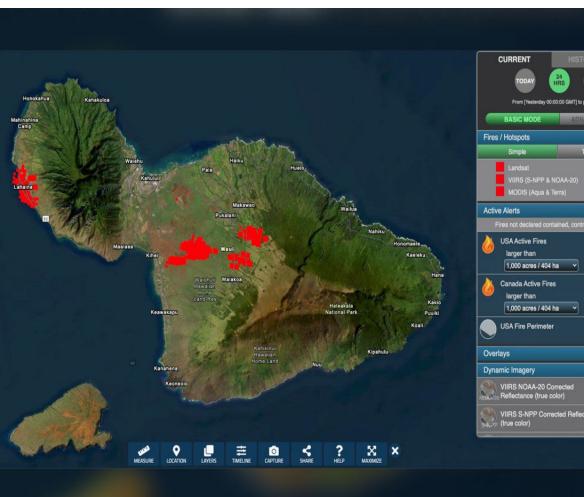


Lithium-ion Batteries in a Fire Disaster Response: Maui Case Study

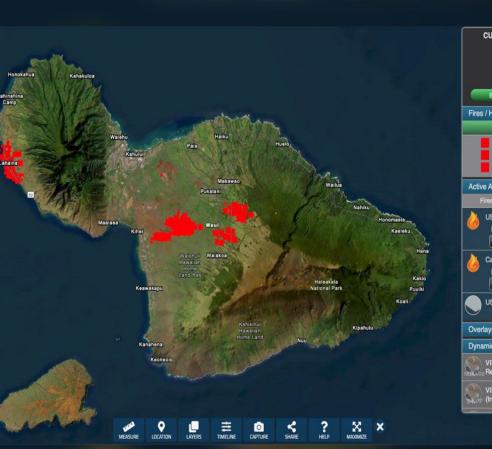
00


00

00

00

06


NASA

Greg Jenkins-USEPA Contractor Brad Martin-USEPA Region 10 OSC

Lithium-ion Batteries in a Fire Disaster Response: Maui Case Study

CURRENT HISTORICAL	×
TODAY 24 7 HRS DAYS	D
TODAY HRS DAYS	
From [Yesterday 00:00:00 GMT] to present 🕕	
BASIC MODE ADVANCED N	IODE
Fires / Hotspots	-
Simple Time Base	d
Landsat	6
VIIRS (S-NPP & NOAA-20)	0 0 0
MODIS (Aqua & Terra)	0
Active Alerts	-
Fires not declared contained, controlled, nor	out.
USA Active Fires	00
🥝 larger than	
1,000 acres / 404 ha	
Canada Active Fires	00
🥝 larger than	00
1,000 acres / 404 ha	
USA Fire Perimeter	00
\bigcirc	00
Overlays	+
Dynamic Imagery	-
VIIRS NOAA-20 Corrected Reflectance (true color)	00
VIIRS S-NPP Corrected Reflectance (true color)	00
	S

Introductions...

Intro/Background of Incident, Mission Assignment, and Li-ion Batteries

Section 1

Maui Wildfires: Li-ion Battery Operations – The Team

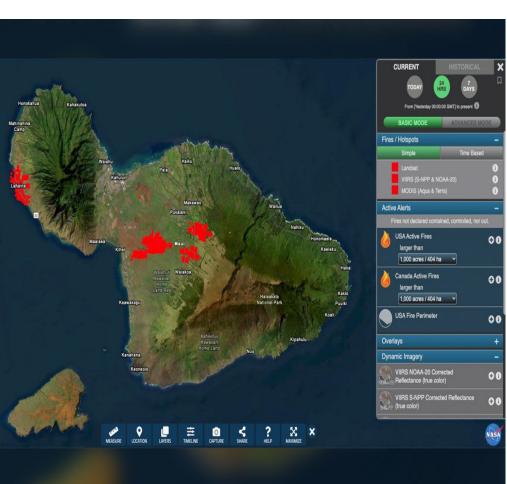
Stephen Ball: USEPA Region 10 On-Scene Coordinator Keith Glenn: USEPA Region 2 On-Scene Coordinator Greg Jenkins: Maui Fire Hazmat Captain (ret.), USEPA Contractor Chris Myers: USEPA Region 9 On-Scene Coordinator Eric Nuchims: USEPA Region 9 On-Scene Coordinator Chris Reiner: USEPA Region 9 On-Scene Coordinator Rob Rezende: San Diego City FD Hazmat Battalion Chief Bryan Vasser: USEPA Region 4 On-Scene Coordinator Leon Wirschem: San Diego County DEHQ – Hazmat Division/Emergency Response USEPA START and ERRS Contract Support State and Local Resources

Introduction and Background

Mission Assignment Operations conducted under ESF-10

- FEMA Funding
- CERCLA Authority
- MAs: Household Hazardous Waste Removal including Residential BESS; Commercial Hazardous Waste Removal; Electric Vehicles; 505 Front Street Dewatering; Submarine Lead-Acid Batteries.

Unique challenge presented by location

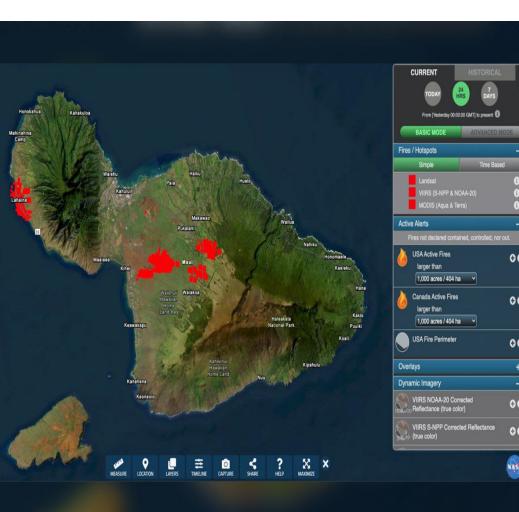

- May/June USEPA Hawai'i Training Circuit
- Shipping DDR Batteries
- Processing in the field is the only way to proceed
- Disposal (Recycling)

DDR Batteries to "Not Batteries"

- Multiple sources, developing the process for identification, removal, processing, and shipping.

Maui Wildfires: Incident Demographics

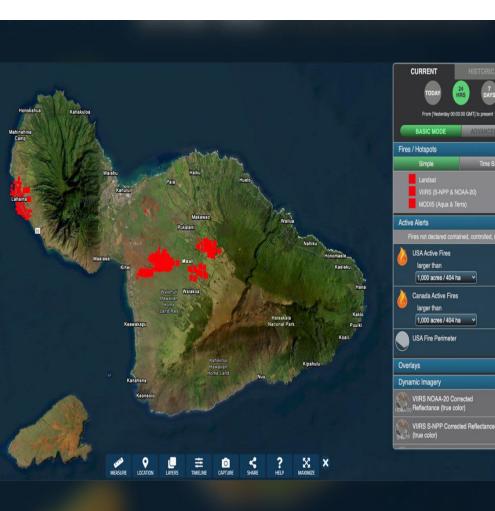
<u>Maui:</u>


- The County of Maui consists of 4 islands; Maui, Moloka'i, Lanai and Kaho'olawe (Ancient Land Mas of "Maui Nui"
- Total area of 2,398 square miles of which 1,162 is land and 1,237 is water.
- As of the 2020 Census and prior to fire, Maui County has a total population of 164,754

<u>Kula:</u> 34.54 square miles. Resident population prior to fire of 6,942

Lahaina: 7.78 square miles of which 80% was destroyed by fire on August 8th, 2023; with a death toll as of November 14th, 2023 of 100 souls and 4 people missing; Resident population prior to fire of 12,702.

Maui Wildfires: Li-ion Battery Operations – ESF 10 MA Structures


Total structures damaged/destroyed/deferred within mission assignment universe: **1,621 total** (1,448 Phase One Complete, 173 Deferred to Phase Two).

<u>Kula:</u> **26 total** (26 Phase One Complete, 0 Deferred to Phase Two); (Commercial, 2 Phase One Complete, 0 Deferred to Phase Two); (Residential, 24 Phase One Complete, 0 Deferred to Phase Two).

Lahaina: 1,595 total (1,422 Phase One Complete, 173 Deferred to Phase Two); (Commercial, 72 Phase One Complete, 100 Deferred to Phase Two); (Residential, 1,350 Phase One Complete, 73 Deferred to Phase Two).

Maui Wildfires: Li-ion Battery Operations – ESF 10 MA Electric Vehicles

- Total Electric Vehicles archived/complete/deferred/denied within mission assignment universe for Kula and Lahaina combined, **99**:
- Archived (Vehicle no longer on site): 1
- Complete: 94

00

00

00

- Deferred: 1
- Denied: 3

Initial Challenges

- Li-ion batteries are unpredictable
- Concerns over safety of personnel and public
- Not a lot of guidance on how to handle them once impacted by fire
- Shipping via DDR is cost prohibitive and limited by shipping co.
- Shipping Co. do not like DDRs
- Little on-island resources for managing DDR/waste
- Few national experts

Presentation of DDR in the Field

Primary Sources:

- Battery Energy Storge Systems
- Electric Vehicles (Cars, gocarts, golf carts)

Secondary Sources:

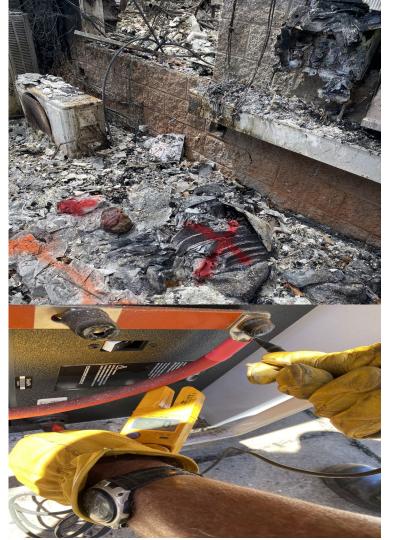
- Limited mobility devices (bikes, scooters)
- Power tools
- Computers
- Speculative/Creative
 Accumulation Sites

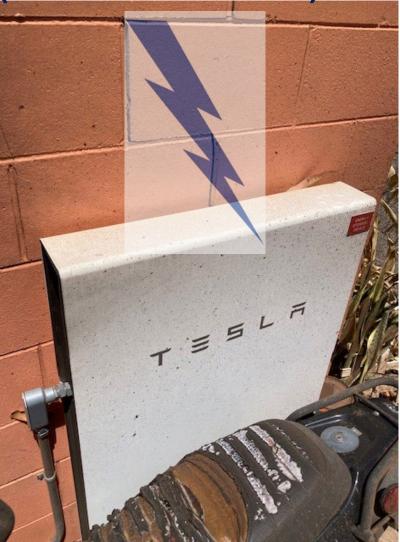
Residential Li-ion Battery Energy Storage Systems (BESS)

Section 2

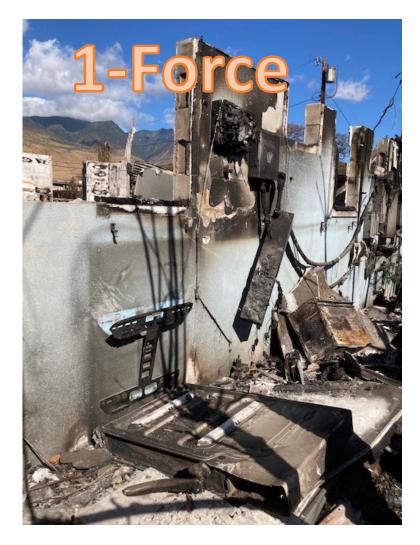
Reconnaissance - BESS

Intel Obtained from:


- Tesla Database
- HECO
- Owner Self-Assessment
- Ground Truth EPA Teams
- -Different Brand = Different Battery Chemistry
- -Limited or No Technical Reference Support From Manufacturers



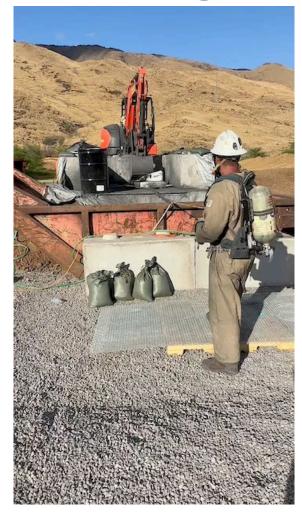
Reconnaissance of "Powerwalls" (Residential BESS)



Removal/Recovery of "Powerwalls" (Residential BESS)

Removal/Recovery of "Powerwalls" (Residential BESS)

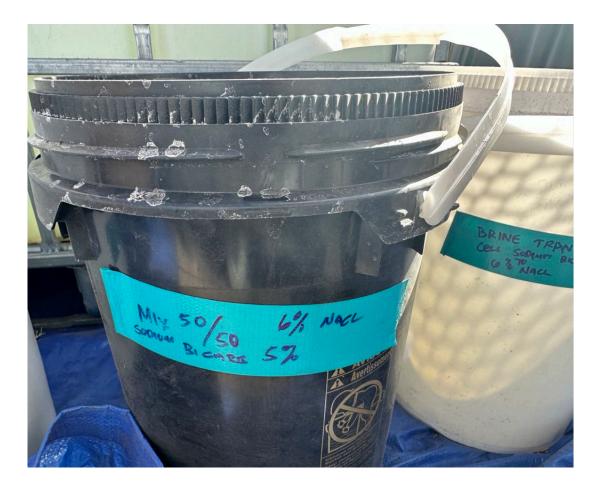
3-"Lau Lau"



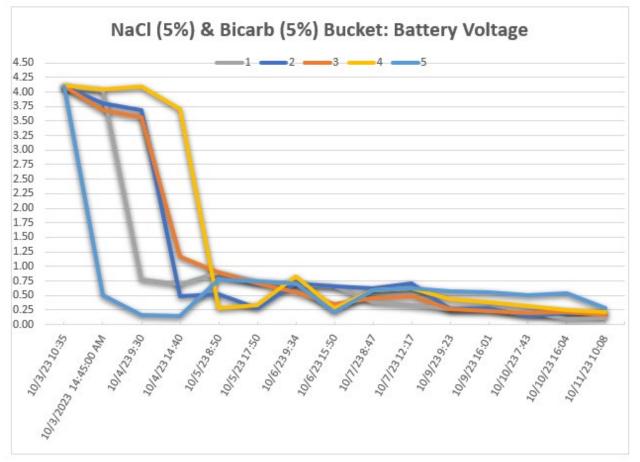
4-Buffalo-Convoy Relo-Staging

Battery Processing – De-Energizing

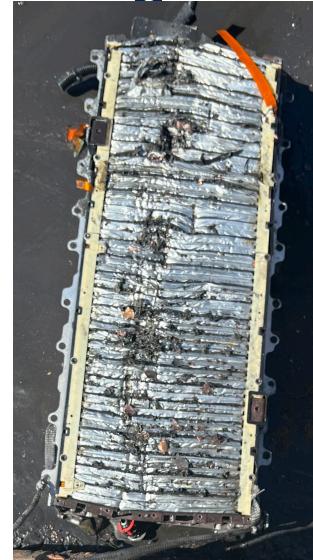




Battery Processing – De-Energizing



Battery Processing – De-Energizing


Battery Processing – Crushing

Battery Processing – Electric Vehicles

Battery Processing – Packaging

Electric and Hybrid Vehicles

Section 3

Reconnaissance - EVs

- Maui County Data
- Motor Vehicles Data
- National Insurance Crime Bureau
- Owner Self-Assessment & Re-entry Forms
- Hotline, Commercials, PSAs
- Ground Truth EPA Teams

Reconnaissance - EVs

Data Management

- Assessment Info
- Point Collection in App
- Vehicle Research
- Battery Condition/Type

10:44 -		.ul 🕈 💋
Cancel	Collect	Submit
Electric No location	Car: Needs As	sess
Needs Assessr	nent	~
Follow Up Requ	uired	
Not in Universe	9	
Denied		
Electric Vehicle Sta Ford escape h		
EV Make		
Ford		
EV Model		
Escape		
Electric Vehicle VIN		
VIN287651976		
EV License Plate		
HPL 287		

Battery Recovery - EVs

To gain an understanding of battery type, important to know:

- Make
- Model
- Year
- Option

This was a luxury if available.

No resources on-island for investigating battery health

Limited or No Technical Reference Support From Manufacturers/Dealers

Battery Recovery - EVs

Different Make = Different Battery Different Model = Different Battery Different Year = Different Battery Different Option = Different Battery

Electrical Hazards-Voltage Checks

Residential Battery Energy Storage System

Electric Vehicle

Dust, Toxic Vapors, and Fire Hazards

Water/Pump and Hose Line in Place, PPE On

Temperature Checks & Load security

Flammable or Toxic Vapors Corrosive Residues

Corrosive Residues

Removal/Recovery of Burned Electric Vehicle Batteries

Electric Vehicle - Battery Removal Ops

3-Remove Fasteners/Strip

EV-Battery Removal Ops/Processing 4-Harvest

Battery Recovery – EVs (Toyota Prius)

Battery Recovery – EVs (Nissan Leaf)

Battery Recovery – Electric Vehicles (Difficulty w/ Insurance/Auction)

EV-Battery Tech Ref / ERGs

Emergency Response Guides

Honda

Infiniti

Jeep

Karma

Kia

Lexus

Lincoln

Lucid

Mack

Mazda

. .

Mercedes-Benz

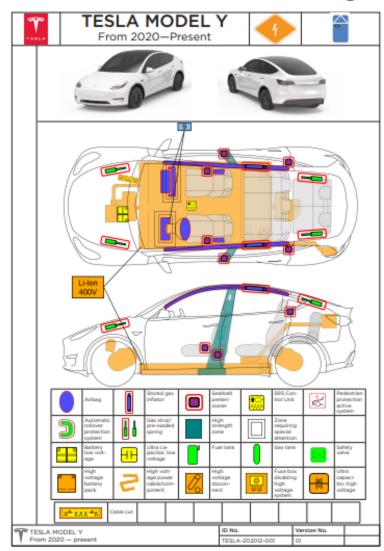
NFPA actively maintains a collection of Emergency Response Guides from 35+ alternative fuel vehicle manufacturers. The guides are free to download. To access these documents, visit our manufacturer web pages below:

- Acura
- Audi
- Autocar
- Automobili Pininfarina Hyundai
- Azure Dynamics
- Bentley
- BMW
- BrightDrop
- Buick
- BYD
- Cadillac
- Chevrolet
- Chrysler
- Dodge
- Fiat
- Fisker Automotive

- Green Power MotorsHino
 - Nissan
 - Nova Bus

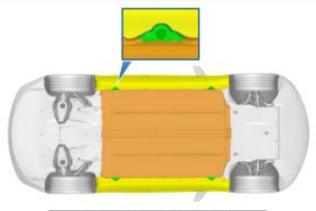
Nikola

- Optimal-EV
- Peterbilt
- Felen
- PorscheProterra
- Kenworth
 - RivianSaturn
- Lightning eMotors
 - Smith
 - Subaru
 - Tesla
 - Thomas Built Buses
 - Toyota
 - Van Hool Bus



NATIONAL FIRE PROTECTION ASSOCIATION

The leading information and knowledge resource on fire, electrical and related hazards


EV-Battery Tech Ref / ERGs

WARNING Be careful to not damage the battery pack while stabilizing / lifting the vehicle.

WARNING The vehicle should be lifted or manipulated only if first responders are trained and equipped at the technician level per National Fire Protection Association (NFPA) and are familiar with the vehicle's lifting points. Use caution to ensure you never come into contact with the high voltage battery or other high voltage components while lifting or manipulating the vehicle.

MODEL Y.

Appropriate lift areas
Safe stabilization points for a Model Y resting on its side
High voltage battery

Waste Determination

Section 5

What is it? Battery? HazMat? Scrap Metal?

- Background
 - Lithium-ion Batteries present various hazards during use and at end of life
 - DOT damaged battery (DDR, 49 CFR 173.185 (f)) Regs burdensome, expensive and ineffective to address safety concerns.
 - Alternative techniques have been developed on Maui; however, required changes/updates to 40 CFR and 49 CFR are needed.

Problem

- Damaged, defective or recalled lithium-ion battery have special packaging that was intended to mitigate hazards but effectively does not prevent build-up/release of toxic and explosive gases; and is expensive.
- Shipping of material is cost prohibitive and subject to riskbased acceptance procedures of carriers.
 - Shippers/carriers do not prefer to accept fire impacted batteries (DDR).
 - Without additional material processing, the general industry expectation is that fire impacted batteries will move as hazardous waste due to reactivity (DDR).

- Actions (Maui)
 - Assess state of battery cell condition and charge
 - Increase state of charge is related to risk and reactivity
 - Brine solution can significantly reduce the state of charge.
 - Based upon battery assessment, as necessary brine/de-energize battery cells (5% Sodium Chloride; transition 50/50 Mix of 5% Sodium Chloride and 5% Sodium Bicarbonate)
 - Crush/destroy/de-construct
 - No longer meets the definition of a battery per EPA or a lithiumion battery per DOT/PHMSA

- Actions (Maui)
 - Crush/destroy/de-construct (No longer meets definitions)
 - 40 CFR 273.9 Battery means a device consisting of one or more electrically connected

electrochemical cells which is designed to receive, store, and deliver electric energy. An electrochemical cell is a system consisting of an anode, cathode, and an electrolyte, plus such connections (electrical and mechanical) as may be needed to allow the cell to deliver or receive electrical energy. The term battery also includes an intact, unbroken battery from which the electrolyte has been removed.

• 49 CFR 171.8 *Lithium ion cell or battery* means a rechargeable electrochemical cell or battery in which the positive and negative electrodes are both lithium compounds constructed with no metallic lithium in either electrode. A lithium ion polymer cell or battery that uses lithium ion chemistries, as described herein, is regulated as a lithium ion cell or battery.

- Actions (Maui)
 - Material still observed to generated very limited toxic and flammable gases (Electrolysis, hydrolysis, oxidation, and/or decomposition)
 - UN Test Copyright © United Nations, 2019. All rights reserved

33.5.4 Test N.5: Test method for substances which in contact with water emit flammable gases

33.5.4.4.4 Packing group III/Category 3 should be assigned to any substance which reacts slowly with water at ambient temperatures such that the maximum rate of evolution of flammable gas is greater than 1 litre per kilogram of substance per hour, and which does not meet the criteria for packing groups I or II/Categories 1 or 2.

Actions (Maui)

- Material moved in packaging that provides:
 - Ventilation (Highest Readings Taken)
 - CO sensor is a 40% H2 Sensor
 - 400 PPM of CO=1000 PPM of Hydrogen or .1%v
 - LEL of H2 is 4% so .1%v= 2.5% of LEL
 - (Drager Tubes: .2%, very light colored green)
 - Particulate Control
 - Water Intrusion Control
- Packaging transported in open top containers

Waste Determination and Transportation (Maui via Ocean Carrier to West Coast to Recycler)

2 Open Top Containers Moved with 30 Ions of "No-Longer Batteries"

SOP's/JHA's

Section 6

Maui Wildfires 2023 Damaged Lithium-Ion Battery Management Guide for Electric Vehicles Version: November 2, 2023

1. OBJECTIVE

The handling of damaged lithium-ion batteries inherently presents significant hazards to response personnel. This Guide has been established as a set of general guidelines for the proper handling of lithium-ion batteries to protect all response personnel. The purpose of this procedure is to outline the minimum requirements for safe handling, transportation, and the disposal process considerations for fire damaged lithium-ion batteries through a process of hazard identification and exposure control practices resulting in risk mitigation (Hazard x Exposure = Risk). This Guide is geared towards the following categories of lithium-ion batteries: Battery Energy Storage Systems (BESS), electric and hybrid vehicles (EVs), micromobility devices (e-bikes and scooters), and small batteries (vaping devices, computers, cell phones, etc.)

2. HAZARDS

Thermally insulted, burned or partially damaged lithium-ion batteries are susceptible to thermal runaway. This chemical reaction produces self-sustaining high temperatures that can result in the release of toxic and flammable/explosive vapors with the potential for fire (Figure 1). In addition to combustion producet, the vapor produced during thermal runaway and fire can include the following hazardous and toxic and flammable/explosive vapors.:

- Hydrogen (30%-50%)
- · Carbon monoxide (CO)
- · Hydrogen fluoride (HF)
- Hydrogen chloride (HCl)
- Hydrogen cyanide (HCN)
- Phosphoryl fluoride (POF₃)
- · Organic solvent droplets
- · Ethane, methane, and other hydrocarbons

Figure 1: Diagram depicting a cascading thermal runaway event.

Burned or damaged batteries are unpredictable and cannot be considered fully discharged or free of hazards. Reignition from propagation or thermal insult to other cells within a battery is common and can occur 30 to 90 days from an initial thermal runaway event. During transportation, extreme temperatures and mechanical damage (such as puncturing or jostling) can trigger additional thermal runaway events. Batteries, groups of cells, or individual cells that have suffered significant fire damage may be present as a mass of melted or consumed material that must be evaluated by the Electric Vehicle Task Force to determine if the article has the remaining potential to be a functional cell or battery. When in doubt, the fire damaged article(s) in question must be rendered safe by the Electric Vehicle Task Force (eliminate the hazard) to effectively manage any risks associated with any necessary future steps, such as: local ground movement/transportation, disposal or remediation, and long-distance shipping by ground or vessel. etc.

1

SOPs

EVs

SUPERFUND TECHNICAL ASSESSMENT RESPONSE TEAM STANDARD OPERATING PROCEDURE FOR RECONNAISSANCE OF ELECTRIC VEHICLES 2023 MAUI WILDFIRE RESPONSE DRAFT OCTOBER 27, 2023

1. OBJECTIVE

This Standard Operating Procedure (SOP) describes the process to determine the presence and location of hybrid and electric vehicles (EVs) impacted by fire. Identification of EVs in a burn zone is necessary to ensure the proper handling and recycling/disposal of lithium ion and nickel-metal hydride battery packs. The objective is to identify and log all hydrid and EVs within the burn zone. This includes vehicles with partial or no visible impacts by fire since temperatures as low as 150 degrees fahrenheit can compromise the batteries. The purpose of the battery reconnaissance (recon) is to:

- Understand the scope of the EV project and collect specific data in the site database which can then be queried for information;
- Assist the battery recovery process;
- Inform EPA's discussions of the disposition of EVs with interested third parties such as owners, insurance companies, local police and city officials, local auto recovery companies;
- 4) Plan battery processing activities; and
- Plan disposal of EV batteries.

The Battery Recon Team will be followed by the Battery Removal Team which will be responsible for assessing the condition of the vehicle and the battery, if the battery should be removed, or if the owner of the vehicle or insurance company should be contacted (e.g., if the vehicle appears not to be impacted). The Battery Recon Team will typically be made up of 2-3 START personnel with oversight by <u>an</u> Federal On-Scene Coordinator.

2. SUMMARY OF METHOD

Recon is done by a team of trained hazmat responders familiar with vehicle manufacturers, models, and mechanical and battery technology. Teams will survey burned areas looking for vehicles with either hybrid or all electric drivetrains. Once a vehicle is positively identified with hybrid or EV technology, it is marked physically with paint or grease pencil, with a blue colored lightning bolt (typically paint can be used on burned vehicles and the grease pencil on non-burned vehicles on the windshield or glass) and digitally entered into electronic field collection and mapping software (QuickCapture via Field Maps). Additional methodology can be found in the Maui Wildfires 2023 Damaged Lithium-Ion Battery Management Guide for Electric Vehicles.

JHA – Battery Energy Storage Systems

REGION IX EMERGENCY RESPONSE

2023 Maui Wildfires

U.S. Environmental Protection Agency, Region 9

Emergency Response Section

JOB HAZARD ANALYSIS #7: Power Walls / Lithium Batteries

	JHA	
		Location: 2023 Maui Wildfires
Task Description:	Managing power walls and lithium batteries	Task Duration: Daily

	Physical Hazards						
	1		T	Expo	oiure	Potenti	al
Hszard	Source	urce Control Measures	H	М	L	Unk	N/A
Stored Energy (Electricity) / Fire and Explosion	 Electric/Power supply lines Power walls (Tesla and other brands or hoomenade versions) Lithium batteries 	lines shut off/disconnected from the power walls (Tesla er brands or a. Licensed/certified electrician de versions) to verify power status.	- 				

		 Maintain fire readiness (fire extinguishers and pressurized water sparyers to cool container during transport in the event of reaction/fire situation). 			
Chemical Exposure	By-product of fires involving lithium hatteries	See Chemical Hazards section below			

		Biological Hazards					
				Expo	sure	Potenti	al
Hazard	Source	Control Measures	н	м	г	Unk	N/A
COVID-19 Exposure	Unknown	Follow COVID-19 protocols					

Chemical & Radiological Hazards							
				Exposure Potential			al
Hazard	Source	Control Measures	н	м	г	Unk	N/A
Hydrogen	By-product of	 Partially burned, Partially insulted, intact, but suspected 					
Fluoride	fires involving	insulted power walls: - SCBA required for respiratory					
	lithium batteries						
		charred or Completely charred and bulged power walls:					
		organic gas/acid gas filters required for respiratory					
		protection.					
		FR clothing required for potential fires.					
		In the event a reaction occurs during handling,					
		immediately drop the power wall and vacate the area to safety.					
		Notify the fire department (dial 911).					

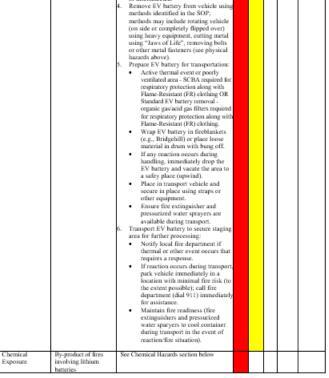
Partially burned, Partially insuited, or Completely charred or Completely intact, but superited charred and bulged insuited power walls power SSCBA for walls: (Organic respiratory agaviacid gas filters protection combined wills FR clothing) respiratory			PPE		
with FR clothing.)	Level A	Partially burned, Partially insulted, intact, but suspected insulted power walls -(SCBA for respiratory protection combined	or Completely charred and bulged power walls: (Organic gas/acid gas filters required for respiratory protection combined	Level D Mod	Level D

	Other
None	ê

JHA – EV Battery Removal & Transport

or disconnected

2023 Maui Wildfires U.S. Environmental Protection Agency, Region 9


Emergency Response Section

JOB HAZARD ANALYSIS #8: EV Battery Removal and Transport

	JHA		
	Name of Task: EV Batteries	Location: 2023 Ma	ui Wildfires
Task Description:	Managing EV batteries	Task Duration: Da	ily

	Physical Hazards – EV Battery Remov	T	Expo	sure	Potentia	_	
Hazard	Source	Control Measures	H N L		L	Unk	N/A
Overhead Hazards	Burned out structure debris	Situational awareness. Hard hat	Г				
Trip Hazards	Burned out structure debris	Situational awareness, test footing prior to stepping on unknown area					
Electrocution	Energized power lines. Charged EV battery.	Assume all electric lines and appliances are energized. Evaluate EV battery prior to handling.					
Traffic	Vehicles traveling in work areas	Situational Awareness. High visibility vests					
Fall Hazard	Open septic field or tree root burnout	Situational Awareness. Mark deep fall hazards with caution tape and orange spray paint					
Falling Trees	Burned out trees	Situational Awareness. Observe Arborist markings trees. Avoid hazardous tree fall zones. Cease work with wind speeds of 20mph.					
Puncture Risk	Sharp objects in debris	Situational Awareness. Leather work gloves.					
Heavy Equipment	Crush zones during vehicle rotation	Situational Awareness. Spotter usage.					
Pinch Points	Cutting metal/Jaws of life	Situational Awareness. Use leather work gloves.					
Heat Stress	Working in protective suits	Follow Work/Rest schedules. Stay Hydrated					
Lifting Injuries	Lift heavy batteries and equipment	Use propped lifting techniques. Use two man lift for heavy objects Do not carry heavy objects far distances					

	Physical	Hazards – EV Batteries					
				Expo	iure	Potenti	al
Hazard	Source	Control Measures	н	м	г	Unk	N/A
Stored Energy		all electrical power has been					
(Electricity) / Fire		f/disconnected from EV					
and Explosion	EV high-voltage and vehicle	2					
	low-voltage batteries a.	Licensed/certified electrician					
	5	to verify power status.					
	Ensure	no backfeeding to the EV					
	vehicle	(i.e., solar panels or any other					
	device	that could potentially be					
		energy to or drawing energy					
		V vehicle).					
		the energy storage system (i.e.,					
		tery) after verification that all					
		to the vehicle has been shut off					

		Biological Hazards					
				Expo	sure	Potenti	al
Hazard	Source	Control Measures	H	м	г	Unk	N/A
00100.00		X N (20100 10)					
COVID-19	Unknown	Follow COVID-19 protocols					

Chemical & Radiological Hazards								
				Exposure Potential				
Hazard	Source	Control Measures	н	М	г	Unk	N/A	
Alkaline Ash	Remnants of	Personal Data Ram worn by perimeter personnel. MultiRae						
and Battery	burned out	monitoring by screening team. P100 respirators on EV						

Materials	structures and battery materials	battery removal cre	ew.			
Asbestos	Remnants of burned out structures		n worn by perimeter person ening team. P100 respirato ew			
Flamable and Combustable gases		protection (i.e., gog SCBA.	 a. P100 respirators and proggles). If ventilation concer 			
	Batteries		P-100 respirators, acid-proof gloves			
Lead acid	Batteries By-product of	Tyvek suites, acid-	proof gloves I event or poorly ventilated			
Fluoride	fires involving lithium batteries	battery remov- for respiratory 2. FR clothing re 3. In the event a immediately d safety.	spiratory protection OR St al - organic gas/acid gas fil protection. squired for potential fires. reaction occurs during han- trop the EV battery and vac edepartment (dial 911).	ters required fling,		
			PPE			
Level .	Ai or res	Level B ctive thermal event poorly ventillated area. (SCBA for piratory protection ombined with FR clothing)	Level C Completely charred or completely charred and balged EV battery: (Organic gas/acid gas filters required for respiratory protection combined with FR elothing.)	Level D Mod	Level D	
			Other			_
			Other			

NOTES:

From draft SOP on EV Reconnisance – Hazards and required **PPE** are listed as: Many hazards exist when performing reconnaissance of burned vehicles. Some of these hazards include sharp edges, broken glass, puncture hazards, structurally unsafe walls, beams, and roofs, high voltage hazards, toxic dust, compromised trees, heat/cold stress, and many more. The recommended PPE for this task is: long sleeve pants and shirts, hardhat, safety toe boots with steel shank, cut resistant gloves, eye protection, high visibility vests, and a dust mask or respirator. Higher level PPE such as <u>Tyvek and boot covers</u> is recommended when conditions require entry into **ash footprints**.

From draft SOP on EV Battery Removal – Hazards and required PPE are listed as: Numerous chemical and physical hazards are present during vehicle battery recovery. Chemical hazards include acid gases and occasional lead-acid. Physical hazards are heavy lifting of responder tools, sharp metal, fire, heat, ash and dehydration. The PPE level utilized is Level C with half-face respirator utilizing acid gas/P100 dual cartridge, flame retardant clothing (FRC), cut resistant gloves, hard hat and safety glasses. Tyvek suits are only utilized during lead acid battery removal

Next Steps

Section 7

Next Steps

The Future of Li-Ion Battery Response to Ensure Safety of All Involved

- RCRA Conversation within USEPA
- Development of a new North American or UN Identification Number or for the end-state material of the process in order to facilitate proper identification (labelling), transport and disposal. Collaborative approach between US DOT/PHMSA and US EPA.
- Recycling vs Disposal
- Regulatory framework will need to be changed and/or created to address the new wastestream.
- USEPA Emergency Response SOPs
- USEPA Emergency Response Li-Ion Battery Taskforce
- Intellectual property determination (patent) of the process ensure the process is available to all as appropriate.
- The intentional evolution of the process ensure that the process can and will be scalable and usable by private industry and local through to federal response organizations.
- Provide and participate in national and regional studies, exercises and trainings (San Diego).

Li-Ion Battery Taskforce

Region	Contact(s)	Region	Contact(s)
1	Lina Takahashi Michael Cofsky	7	Gregory Dillon
2	Stephen Simonetti Keith Glenn	8	Eric Sandusky Joe Payne
3	Christopher Guzzetti	9	Christopher Myers Eric Nuchims
4	Bryan Vasser	10	Stephen Ball
5	Leonard Zintak	ERT	Joseph Bundens Brian Kovak
6	David Robertson	RM Reps	Peter Guria James Webster

How to contact EPA

Direct line - 24-hour Duty Officer: 206-553-1263

National Response Center: 800-424-8802

When to call EPA...Anytime you want

- Actual or <u>threat</u> of discharge of **oil** to surface waters.
- Actual or <u>threat</u> of release of CERCLA hazardous substances, pollutants, or contaminants.
- Technical support desktop or in the field
- When a responsible party is:
 - In over their head with a cleanup
 - Not taking action
- When you think the cleanup is going to take awhile
- Med-Large volume incidents (Fires at lithium ion "recyclers", vape facilities)
- Tier 2 reporting facilities
- Mismanaged chemical or oils
- See visible mercury beads >2 tablespoons
- Looking for a sucker to take your problematic site

Cost Reimbursement

Hazardous Substances

- Up to \$25,000 per incident
- Must involve CERCLA hazardous substances
- Local, County, Tribal government only

•Oil

 Multiple options through US Coast Guard

Contact Info

Brad Martin EPA On Scene Coordinator <u>Martin.Bradley@epa.gov</u> Cell (206) 940-0817

